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Abstract

For the transport in an inert pore the local species momentum balance is reconsidered. This leads to a Maxwell–Stefan type equation
for a component α in which the gradient in chemical potential, the interspecies friction and the α–α shear stress form the momentum
balance. From the set of equations the component axial velocity profiles can be derived, and so we call this model the velocity profile
model (VPM-1), in which 1 stands for the fact that we only consider here the flow in one direction. For binary systems the set of equations
is solved, and pore-integrated velocities are derived. This is done both for liquids with a no-slip boundary condition and for gases with
Maxwell-slip boundary condition. The pore-averaged velocities can be expressed in the same form as the binary friction model. The use
of the difference in pore-averaged velocities instead of the pore-averaged differences requires a correction function, which is derived for
both fluid types. For liquids the component-wall friction factors are equal to those in the binary friction model, for gases a slightly different
form is obtained. Comparison of predictions for liquid ultrafiltration and gas transport through porous plugs shows in general very small
differences between the present model and the BFM, and good agreement with experimental data. The VPM-1 predicts a second flow
reversal point of (near-)equal mass isobaric diffusion of gases at different pressures, and a reversal with temperature. From the model
follows a new expression for the velocity difference. Velocity profiles for various situations are explored such as liquid ultrafiltration and
diffusion, counterdiffusion of gases and for the Stefan-tube. In the latter we find that for a zero average flux of inert gas there is a core of inert
gas moving in the direction of the water vapor, and a reverse flow in the area near the wall. The model can be extended to more-dimensional
flow problems such as in adsorption and heterogeneous catalysis. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The transport of mixtures in pores is of great interest for
the modeling of a variety of separation processes, such as
ultrafiltration, adsorption and drying, and for the transport in
reaction systems such as heterogeneous catalysts and porous
membrane reactors. Over the last 5 years the Science Cita-
tion Index shows 42 references to the “dusty gas model” of
Mason et al. [1,2] and for a number of these papers there
is an underlying Ph.D. Thesis. This indicates that the in-
terest in multicomponent transport in pores is very lively,
and we have the impression that it is growing. We have re-
cently proven that the dusty gas model is invalid because
of errors in the derivation [3]. Starting from the Lightfoot
friction equation [4], one of us developed the “binary fric-
tion model” [3], which was shown to be in good agreement
with experimental data both in liquid ultrafiltration [3,5] and
transport of gas mixtures in capillaries and in porous graphite
[3]. In recent textbooks of Wijngaarden et al. [6] and Keil

∗ Corresponding author. Tel.: +31-40-247-2973; fax: +31-40-243-9303.
E-mail address: p.j.a.m.kerkhof@tue.nl (P.J.A.M. Kerkhof).

[7] support was given to the viewpoints on the dusty gas
model and on the development of the binary friction model.
The relevance of the meso- and macropore resistance was
demonstrated by Silva and Rodrigues [8], who found that in
adsorption of n-hexane on zeolite 5A pellets that these re-
sistances were completely rate-controlling. In the BFM the
friction coefficients between components and the wall are
expressed in terms of the permeability and partial viscosity
coefficients, which can be estimated from free-fluid mixture
viscosity data. Also based on the BFM some classic prob-
lems were studied such as the Stefan-tube, Graham’s law
and the Bosanquet equation [9]. Still lacking at present was
a theoretical underpinning of the theory from first princi-
ples. Whitaker [10–12] very clearly showed the neglect of
considering the momentum balances and velocity profiles
for instance in considering the Stefan-tube by chemical en-
gineers, and derived a criterion from the momentum balance
to indicate if and when the usual assumption of flat veloc-
ity profiles would be practically justified. In various treat-
ments of counterdiffusion in capillaries, such as by Kramers
and Kistemaker [13], Waldmann and Schmitt [14], Lang and
Eger [15] and Lang [16], no clear indication of velocity pro-
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Nomenclature

A constant, see Eq. (23) (N m−4 s)
B force on component(s) per unit volume

(N m−3)
B0 pore permeability, see Eq. (28) (m2)
c molar concentration (kmol m−3)
–D Maxwell–Stefan diffusion coefficient

(m2 s−1)
D diffusion coefficient (m2 s−1)
d constants, see Eq. (60)
F function, see Eq. (13)
F function, see Eq. (45)
f function, see Eqs. (26a) and (26b)
fr coefficient of reflection (–)
fαm friction coefficient for gases (s m−2)
G slip modulus (m)
gD ratio between averaged velocity difference

and difference in averaged velocities (–)
h function, see Eqs. (31) and (32)
I0, I1 modified Bessel functions of the first kind

of order 0 and 1, respectively
K constant, see Eq. (10) (–)
Kαβ coefficients in slip flow equation (42)
kB Boltzmann constant (kJ per molecule K−1)
M molecular mass (kg kmol−1)
N flux (kmol m−2 s−1)
n molecular density (molecules m−3)
P pressure (Pa)
Qαβ coefficient for averaged velocities, see

Eqs. (46) and (47)
r coordinate (m)
R half distance between two infinite plates,

capillary radius (m)
Rg gas constant (kJ kmol−1 K−1)
T temperature (K)
u velocity (m s−1)
V̄ specific molar volume (m3 kmol−1)
x coordinate (m)
x mole fraction (–)
z coordinate (m)
< > pore-averaged

Greeks
α constant, see Eq. (9) (–)
αp, βp barodiffusion constants, see Section 4.3
β modulus, see Eq. (14) (–)
βαm friction coefficient between component

α and wall (s m−2)
γ constant, see Eq. (12) (N)
δij Kronecker delta (–)
ε element of stress tensor (s−1)
ζ α , ζ αβ ratio of Knudsen to molecular diffusion

coefficients, see Eq. (44) (–)
η (partial) viscosity (Pa s)

κ fractional viscosity coefficient (s)
λ root, see Eq. (29) (m−1)
Λ mean free path (m)
µ chemical potential (kJ kmol−1)
ν shape factor, see Eq. (25) (–)
ξ dimensionless coordinate (–)
ξαβ Wilke coefficient, see Eq. (56)
φ volume fraction (–)
Φ accounting factor for deviation between

pore and free-fluid diffusion coefficient (–)
ϕ modulus, see Eq. (27)
ω weight fraction (–)

Subscripts
1, 2 component, coordinate
i, j, k, l coordinate number
m wall, membrane
s slip
t total
α component
β component

Superscripts
0 zero-pressure limit, pure-component
K Knudsen
v normal region
∼ three-dimensional vector
∞ infinite pore size

files was taken into account. In detailed partial studies of
the baroeffect the statistical mechanics treatments did not
lead to expressions readily to be converted to average fluxes
over the pore diameter, e.g. Lang and Loyalka [17]. The
notable exception is the work of Zhdanov and Roldughin
[18,19] on gas diffusion in capillaries which was also par-
tially inaccessible due to incompleteness of mentioning the
complete equations for the averaged and the diffusion veloc-
ities, as desirable for the chemical engineer. However, their
work culminated in an overview paper in which expressions
were given for the velocity difference of the species and the
mass-averaged velocities in transport in a capillary [20], the
latter for the Knudsen region. We will come back to this
later. In their comments on the dusty gas model they also
presented the species momentum balance for gas-phase dif-
fusion at very small Knudsen numbers, as followed from
statistical mechanics. In the absence of external forces this
reads

∂Pα

∂xi

− ηα

∂εik

∂xk

= −
∑

β

nαnβkBT

n–Dαβ

(ũα − ũβ)

= −Pt

∑
β

xαxβ

–Dαβ

(ũα − ũβ) (1)
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in which

εik = ∂ui

∂xk

+ ∂uk

∂xi

− 2

3
δik

∂ul

∂xl

(2)

and the k and l subscripts indicate Einstein summation over
the coordinate directions. The ηα are the partial viscosities,
for which∑

α

ηα = ηt (3)

holds, with ηt the viscosity of the mixture.
They note that the viscous forces are not accounted for

correctly in the DGM, and that also another “defect of the
dusty gas model lies in the fact that it does not take into
account the contributions of thin Knudsen layers into the
fluxes at small Knudsen numbers” [20].

For the case of only axial velocity in the x-direction be-
tween two infinite plates, Eq. (1) goes over in

∂Pα

∂x
− ηα

∂2u

∂z2
= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ) (4a)

or in a capillary:

∂Pα

∂x
− ηα

1

r

∂

∂r

(
r

∂u

∂r

)
= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ) (4b)

In these equations u stands for the mass-averaged velocity.
Physically the terms can be associated with the gradient in
chemical potential, the viscous friction and the intermolec-
ular friction, respectively.

Kronberg [21] proposed a modified version of Eq. (4b):

∂Pα

∂x
− ηα

1

r

∂

∂r

(
r

∂uα

∂r

)
= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ) (5)

and so in the second term the gradient in the component ve-
locity rather than that in the mass-averaged velocity appears.
He solved the equations for a binary system assuming slip
boundary conditions of the form

r = R, uα = −Λα

∂uα

∂r
(6)

in which Λα is the mean free path of the component in the
mixture. He posed relations for Λα equivalent to

Λα = 2ηαDK
α

RPt
(7)

in which the DK
α are the Knudsen diffusion coefficients.

Unfortunately he did not publish his results, and they are
only partially available in the student graduation report by
Schoorlemmer [22]. In terms of the cross-section averaged
flux of component 1 in a binary system, his equation for the
so-called viscous flow model (VFM) reads

〈N1x〉RgT

Pt
= −DVFM

1
∂x1

∂x
− x1KVFM

1
∂Pt

∂x
(8)

with

DVFM
1 = α1–D12 (9)

KVFM
1 = 1

ηt

(
B0 + η1DK

1

Pt
− α1x2

γ1

Pt

)
(10)

α1 = DK
1 + (η1/ηt)–D12[F (β) − 1]

x1DK
2 + x2DK

1 + –D12F (β)
(11)

γ1 = η1x2(–D12 + DK
1 ) − η2x1(–D12 + DK

2 ) (12)

F (β) = β

2

I0(β)

I1(β)
(13)

β =
(

8B0ηtx1x2

η1η2–D12

)1/2

(14)

The parameter β was identified by him as an inverse Knud-
sen number of the order R/Λ, with Λ the average molecular
mean free path.

2. The velocity gradient term

The basic difference between the Zhdanov and the Kro-
nberg equations (4b) and (5), is the expression of the vis-
cous friction in the gradient in the mass-averaged and the
component velocity, respectively. It is therefore of interest
to investigate this matter somewhat further.

In Fig. 1, we have illustrated the elements of the momen-
tum balance for a component α, for the case that we have

Fig. 1. Illustration of momentum balance on component α in a fluid: (a)
without velocity gradients, and (b) with velocity gradients.
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only axial velocities, in the x-direction, as well as gradients
in the partial pressures in that direction only, and assuming
the absence of external forces. Per unit volume there is a
force on α because of the gradient in chemical potential. Let
us first consider the situation without velocity gradients. For
this situation we have the classical Maxwell–Stefan equation

∂Pα

∂x
= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ) (15)

We have a change in x-momentum through the molecules
of α and β passing through the x–z-planes, but also from
molecules passing through the x–y planes. Since there are
no velocity gradients, the α–α and β–β collisions will re-
sult in a zero momentum change. From the viewpoint of
component α the momentum change will be thus the result
of α–β collisions, caused by β-molecules entering through
all planes of the volume element. Thus both lateral and ax-
ial α–β interactions are represented by the Maxwell–Stefan
diffusion term, the r.h.s. of Eq. (15).

For a situation in which we have velocity gradients,
still the α–β interaction caused by the flux of β-molecules
through the x–y planes is accounted for in the diffusion term.
Now, however, the α-molecules experience the momen-
tum change due to collisions with the flux of α-molecules
through the x–y planes with a velocity different from that in
the volume element, and so we should add only the shear in
terms of the velocity gradient of α, leading to the Kronberg
type of equation.

Also we can see an inconsistency in the Zhdanov equation.
For a simple situation like considered here, we can write for
a binary system:

∂Pα

∂x
− ηα

∂2u

∂z2
= −Pt

xαxβ

–Dαβ

(uα − uβ),

∂Pβ

∂x
− ηβ

∂2u

∂z2
= −Pt

xαxβ

–Dαβ

(uβ − uα) (16)

For the mass-averaged velocity we have

u = ωαuα + ωβuβ (17)

Since we assumed no lateral concentration gradients, we
may write

∂2u

∂z2
= ωα

∂2uα

∂z2
+ ωβ

∂2uβ

∂z2
(18)

Also we take the pressure constant over the z-direction, and
so we obtain after addition of the equations for both com-
ponents

dPt

dx
− ηt

∂2u

∂z2
= 0 (19)

which for the normal region, with no-slip boundary condi-
tions gives

u = − 1

2ηt
(R2 − z2)

dPt

dx
, 〈u〉 = − R2

3ηt

dPt

dx
(20)

This simple Poiseuille solution implies that under isobaric
conditions the mass-averaged velocity would be zero, which
is in conflict with experimental measurements. A similar
argument can be made for liquid transport, and the result
would be that no osmotic net flow could occur under isobaric
circumstances. In the following we will further investigate
the Kronberg type of equation.

3. Model development: the velocity profile model

The model to be developed here will be named the ve-
locity profile model (VPM-1), to indicate that we consider
here only one-dimensional flow without radial velocity and
concentration profiles.

In order to generalize the model we consider the momen-
tum balance on component α as formed by the gradient in
chemical potential, by the shear friction due to α–α colli-
sions and the α–β interactions characterized by the diffusion
term.

We obtain the following equations for the two geometries:

Infinite plates : Bα − ηα

∂2uα

∂z2
= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ)

(21a)

Capillary : Bα − ηα

1

r

∂

∂r

(
r

∂uα

–D∂r

)

= −Pt

∑
β

xαxβ

–Dαβ

(uα − uβ) (21b)

with

Bα = cα

dµα

dx

∣∣∣∣
T

(22)

3.1. Solution for two-component liquid phase transport

Here we have

B1 − η1
∂2u1

∂z2
= −ctRgT

x1x2

–D12
(u1 − u2) = −A(u1 − u2),

B2 − η2
∂2u2

∂z2
= −A(u2 − u1), A = ctRgT

x1x2

–D12
(23)

for the infinite plates, and

B1 − η1
1

r

∂

∂r

(
r

∂u1

∂r

)
= −A(u1 − u2)

B2 − η2
1

r

∂

∂r

(
r

∂u2

∂r

)
= −A(u2 − u1) (24)

for the capillary.
We assume a symmetry condition at z = 0 or r = 0,

respectively, and zero velocities at the wall, uα(R) = 0.
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For the solution we find:

u1= − B1
B0

η1
ϕf (λξ) + dPt

dx

B0

ηt

[
ϕf (λξ) − ν + 2

ν
(1 − ξ2)

]

u2= − B2
B0

η2
ϕf (λξ) + dPt

dx

B0

ηt

[
ϕf (λξ) − ν + 2

ν
(1 − ξ2)

]
(25)

with ν a shape factor, which is 1 for the infinite plates, and
2 for the capillary, and ξ = z/R and ξ = r/R, respectively.

Infinite plates : f (λξ) = 1 − cosh(λRξ)

cosh(λR)
(26a)

Capillary : f (λξ) = 1 − I0(λRξ)

I0(λR)
(26b)

Here we have defined a modulus:

ϕ = –D12

ctRTx1x2

η1η2

ηtB0
(27)

with B0 the permeability,

B0 = R2

(ν + 1)2 − 1
(28)

and the root λR is,

λR =
√

1

ϕ
[(ν + 1)2 − 1] (29)

The modulus ϕ may be regarded as a measure for the ratio
between shear and diffusive friction, and is a modified form
of that defined by Kronberg.

By integration over the cross-section we find the
pore-averaged velocities:

〈u1〉 = −B1
B0

η1
ϕh(λR) − dPt

dx

B0

ηt
[1 − ϕh(λR)],

〈u2〉 = −B2
B0

η2
ϕh(λR) − dPt

dx

B0

ηt
[1 − ϕh(λR)] (30)

with

Infinite plates : h = 1 − 1

λR
tanh(λR) (31)

Capillary : h = 1 − 2

λR

I1(λR)

I0(λR)
(32)

In Fig. 2 the functions f and h are presented. For clarity
we write out the chemical potential gradients:

Bα = cα

dµα

dx

∣∣∣∣
T

= cα

dµα

dx

∣∣∣∣
P,T

+ cαV̄α

dPt

dx
,

Bt =
∑

α

Bα = dPt

dx
(33)

The relative importance of the two terms on the r.h.s. of
Eqs. (25) and (30) is determined on one hand by the ratio

Fig. 2. Graphical representation of the functions f and h for infinite plates
and cylindrical capillaries, as defined in Eqs. (26), (31) and (32), in
dependence on the modulus ϕ, defined in Eq. (27).

of the individual species driving force to the total driving
force (pressure gradient) and on the other hand by the val-
ues of ϕf (λξ) and ϕh(λR), respectively. Inspection of the
functions ϕf (λξ) and ϕh(λR) shows that for low values of
ϕ, and so for dominant interspecies friction, these functions
tend to go to zero, leading for both components to the same
Poiseuille velocity profile in the non-isobaric case. For high
values of ϕ, however, the limits of these functions are such
that the second term on the r.h.s. of Eqs. (25) and (30) van-
ishes, and so we encounter another limit situation in which
the transport of each component is only dependent on its in-
dividual driving force and its partial viscosity. We may call
this limit “individual flow”; this occurs when the intraspecies
friction is the dominating phenomenon. It is interesting to
observe that the interspecies or “diffusive” friction tends to
make the individual velocity profiles more coherent, while
the intraspecies “viscous” friction tends to make them more
diverging. As will be explored further on, in many practical
situations both friction terms should be accounted for.

3.2. Solution for two-component gas-phase transport

In gas-phase transport, we specify formally that at the
walls we have a given slip velocity of the components:

z, r = R, uα = us,α (34)

and we obtain the solution as:

u1 = us,1 − η2

ηt
(us,1 − us,2)f (λξ)

+−B1η2ηt + Btη1η2

Aη2
t

f (λξ) − R2

2ν

Bt

ηt
(1 − ξ2)

u2 = us,2 − η1

ηt
(us,2 − us,1)f (λξ)

+−B2η1ηt + Btη1η2

Aη2
t

f (λξ) − R2

2ν

Bt

ηt
(1 − ξ2) (35)

and for the pore-averaged velocities:
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〈u1〉 = us,1 − η2

ηt
(us,1 − us,2)h(λR)

+−B1η2ηt + Btη1η2

Aη2
t

h(λR) − B0Bt

ηt

〈u2〉 = us,2 − η1

ηt
(us,2 − us,1)h(λR)

+−B2η1ηt + Btη1η2

Aη2
t

h(λR) − B0Bt

ηt
(36)

in which now Bα stands for:

Bα = dPα

dx
, Bt = dPt

dx
(37)

Analogously to the single component description of
Maxwell [23] we now put for the slip velocities

us,α = −Gα

duα

dr
(38)

in which Gα is the slip modulus (Gleitmodulus):

Gα = 1

2
ηα(2π)1/2(Pαρα)−1/2

(
2

fr
− 1

)
(39)

with fr the coefficient of reflection.
Also it can be derived,

Gα = 2ηαDK
α

PαR
(40)

in which DK
α is the effective Knudsen diffusion coefficient

of α, which can be approximated by [4]:

DK
α ≈ 0.89DK0

α , DK0
α = 2

3
R

(
8RgT

πMα

)1/2

(41)

After a lengthy derivation we find the following expressions
for the slip velocities, in which for convenience we have
expressed the pressure gradients as B1 and B2:

us,1 = − 1

F
(K11B1 + K12B2),

us,2 = − 1

F
(K21B1 + K22B2) (42)

with

K11 = DK
1

P1

[
η1

ηt
h + (1 − h)

]
+ DK

1 DK
2 (1 − h)

Pt–D12
,

K12 = DK
1

P1
h + DK

1 DK
2 (1 − h)

Pt–D12

K21 = DK
2

P2
h + DK

1 DK
2 (1 − h)

Pt–D12
,

K22 = DK
2

P2

[
η2

ηt
h + (1 − h)

]
+ DK

1 DK
2 (1 − h)

Pt–D12
(43)

We will use also the following notations:

ζα = DK
α

–Dαβ

, DK
αβ = xβDK

α + xαDK
β , ζαβ =

DK
αβ

–Dαβ

(44)

and F in Eq. (42) is given as

F = 1 + (1 − h)ζ12 (45)

From this we can also express the cross-section averaged
velocities:

〈u1〉 = − 1

F
(Q11B1 + Q12B2),

〈u2〉 = − 1

F
(Q21B1 + Q22B2) (46)

Q12 = Q21 = –D12

{
1

Pt
ζ1ζ2(1 − h) + h

Ptx1x2

[
x2ζ1

(
η1

ηt

)2

+x1ζ2

(
η2

ηt

)2
]}

+B0

ηt
[1 − hϕ+(1 − h)ζ12]

Q11 = Q12 + hϕ
B0

η1
+ DK

1

P1
(1 − h),

Q22 = Q12 + hϕ
B0

η2
+ DK

2

P2
(1 − h) (47)

4. Exploration of the model equations: average
velocities

In all of the following the capillary geometry has been
considered.

4.1. Comparison with the binary friction model: liquids

The equations for the binary friction model for liquids
can be written as [4]:

cα

dµα

dx

∣∣∣∣
T

= −ctRgT
∑

β

Φαβ

xαxβ

–Dαβ

(〈uα〉 − 〈uβ〉)

−ctRgT (βαm)BFM〈uα〉 (48)

in which Φαβ was introduced to account for deviations of the
diffusion coefficients inside the pores from those in infinite
fluids. We found that for ultrafiltration of aqueous solutions
of large molecules like PEG-3400 and dextran T70 in good
approximation we could work with Φαβ = 1 [3,5]. The
component-wall friction coefficients in the BFM are

(βαm)BFM = φακα

B0
= cαV̄ακα

B0
(49)

and the fractional viscosity coefficients κ are related to the
partial viscosities by

κα = ηα

ctRgT φα

(50)

In Fig. 3 the fractional viscosity coefficients are compared
to that of water for PEG-3400 and dextran T70.
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Fig. 3. Fractional viscosity coefficients of PEG-3400 and dextran T70,
in relation to the weight fraction of solute, compared to those of water.
Data obtained from free-liquid viscosity data [4,5,25].

By elimination of Bt from Eq. (30) we obtain an equation
which is similar to the BFM equation

c1
dµ1

dx

∣∣∣∣
T

= −ctRgTgD
x1x2

–D12
(〈u1〉 − 〈u2〉)

−ctRgT (β1m)VPM〈u1〉 (51)

and an analogous one for component 2. With respect to
the Lightfoot- or BFM-approximation we see here that
the averaging of the velocities over the pore introduces a
diffusion averaging factor gD into the Maxwell–Stefan
term. For liquids this factor is found to be:

gD = 1

h
− ϕ (52)

and for the wall friction factors we find

(βαm)VPM = ηα

ctRTB0
= (βαm)BFM (53)

In Fig. 4, we have plotted the values of the diffusion
averaging factor for both geometries, with limit values equal
to 1.2 for the plates and 4

3 for the capillary. It is clear that for
low values of the modulus ϕ there is only a small deviation of
this factor from unity, and so there the results of the BFM are

Fig. 4. The correction function gD for use in the pore-averaged
Maxwell–Stefan equations, for liquids.

Fig. 5. Apparent rejection of PEG-3400 during ultrafiltration of aqueous
solutions in a tubular module, in dependence of the flux, for two liquid
circulation velocities. Drawn line: VPM-1, dotted line: BFM.

in good agreement with those of the new model. At higher
values of ϕ we will have a maximum deviation of 33% in
the diffusion term for a capillary; however, increasing ϕ also
means a higher contribution of the wall friction term, and
so the deviations in the total force will be less. In Fig. 5
we show the apparent rejection of PEG-3400 in a tubular
membrane module in dependence of the flux, comparing
the results of the new VPM with those of the earlier BFM,
for two circulation velocities. All relevant physical data, as
well as the description of the boundary layer model for the
flowing feed liquid, can be found in [4,24–26]. We see that
there is only a slight difference between the results of the
two models.

4.2. Comparison with the binary friction model: gases

For gases the BFM equations read as follows:

dPα

dx
= −

∑
β

Φαβ

Ptxαxβ

–Dαβ

(〈uα〉 − 〈uβ〉)

−(fαm)BFM〈uα〉Pα (54)

and again in comparing theory with experimental data we
found that Φαβ = 1 did lead to good results. For the friction
factor we developed the expression:

(fαm)BFM =
(

DK
α + B0

κα

)−1

(55)

and for gases we find from the Wilke relationship [27]:

κα = ηα

xαPt
= 1

Pt

η0
α∑

βxβξαβ

(56)

with η0
α the pure-component viscosity, and the Wilke param-

eters given by

ξαβ =
[1 + (η0

α/η0
β)1/2(Mβ/Mα)1/4]2

[8(1 + Mα/Mβ)]1/2
(57)

Again we can derive the friction-type equation from the
foregoing results:
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dP1

dx
= −gD

Ptx1x2

–D12
(〈u1〉 − 〈u2〉) − (f1m)VPM〈u1〉P1,

dP2

dx
= −gD

Ptx1x2

–D12
(〈u2〉 − 〈u1〉) − (f2m)VPM〈u2〉P2 (58)

For the velocity averaging factor we find

gD = [1 + (1 − h)ζ12]Q12

d1d2 + (d1 + d2)Q12
(59)

with

d1 = h
η2

ηt
+ (1 − h)x2ζ1, d2 = h

η1

ηt
+ (1 − h)x1ζ2

(60)

and for the wall friction factors:

(f1m)VPM = x2

–D12
d2

1 + (1 − h)ζ12

d1d2 + (d1 + d2)Q12
,

(f2m)VPM = x1

–D12
d1

1 + (1 − h)ζ12

d1d2 + (d1 + d2)Q12
(61)

In Fig. 6, we compare the VPM results with the ex-
perimental data of Evans et al. [28,29] for counterdiffu-
sion of He and Ar through porous graphite, and with the
BFM-description. We see that the differences between the
two models here are very small, and visually hard to de-
tect. Simulations over all experimental data ranges showed
a maximum deviation between the models of 2% and an
average difference smaller than 0.2%. In a larger number
of simulations for different gases at different pressures and
pore diameters, we consistently found that the value of the
averaging factor gD was virtually equal to 1, except for a
few percent deviation within the transition region. A typical
example is shown in Fig. 7, for the counterdiffusion of He
and Ar, where the maximum deviation from unity is about
3.5%. Numerically also the wall friction factors are very
close to those of the BFM over a large region. Typically for
larger pores the difference increases. In Fig. 8, again for the
mentioned gases, the relative difference in friction factor is
shown, and it is also seen that here the difference between
the VPM and the BFM values is within a few percent. In

Fig. 6. Comparison of predictions of the fluxes of He and Ar through
low-permeability graphite with experimental data of Evans et al. [28,29].
The predictions by the BFM and the VPM-1 are nearly indistinguishable.

Fig. 7. Illustration of the correction function gD for use in the
pore-averaged Maxwell–Stefan equations, for the case of non-isobaric
counterdiffusion of He and Ar. Purity of both gases 99%, pressure at
Ar-side 2 bar, at He-side 1 bar, pore length 10−3 m.

Fig. 8. Differences in component-wall friction factors as a function of
pore radius, as predicted by the VPM-1 and the BFM. Isobaric diffusion
at 1 bar, pore length 10−3 m.

Fig. 9 the relative difference between the predictions of the
average velocities of the components by the two models is
shown, and again the differences are very small. This was
found again in a larger number of simulations, with one no-

Fig. 9. Differences in predicted pore-averaged velocities between the
VPM-1 and the BFM, depending on pore radius. Isobaric diffusion at
1 bar, pore length 10−3 m.
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table exception: the isobaric counterdiffusion of components
with (near-)equal mass. This will be separately discussed
under Section 4.4.

4.3. The difference in average velocities

In their approach through statistical mechanics Zhdanov
and Roldughin derived for a capillary, relations for the
so-called diffusion velocity; in view of the large confusion
of terminology as discussed elsewhere [4], we prefer here
to indicate this as the difference in average velocity. They
provide three expressions, one for the Knudsen region, one
for the normal region and one for the transition region.
Their results may be written as

〈u1〉 − 〈u2〉 = − 1

x1x2
[–D12]1(∇x1 + [αp]1x1x2∇ln Pt

+[αT ]1x1x2∇ln T ) (62)

which for isothermal transport goes over in

〈u1〉 − 〈u2〉=− 1

x1x2
[–D12]1(∇x1 + [αp]1x1x2∇ln Pt) (63)

For the different regions they have

Knudsen : αp = αK
p = DK

1 − DK
2

–D12
= ζ1 − ζ2,

normal : αp = αv
p = 1

ηt

(
η2

x2
− η1

x1

)
,

transition : αp = 1

2
(αK

p + αv
p) (64)

From the VPM-1 model it follows:

〈u1〉−〈u2〉 = −
(1 − h)(DK

12/x1x2)[∇x1 + x1x2βK
p ∇ln Pt]

+h(–D12/x1x2)[∇x1 + x1x2βv
p∇ln Pt]

1 + (1 − h)(DK
12/–D12)

(65)

with

βK
p = DK

1 − DK
2

DK
12

, βv
p = x1η2 − x2η1

ηt
(66)

For low values of the modulus ϕ the value of the function
h approaches unity, and so we are in the normal region. In
that case only the second term on the r.h.s. of Eq. (65) re-
mains, the denominator goes to 1, and the result is equal
to that of the ZR-equation. For very high values of ϕ, the
function h tends to 1/ϕ, and so only the first term in the
r.h.s. of (65) is important. Also for high ϕ, which can be
encountered, e.g., for very small pores and/or very low pres-
sures, the ratio DK

12/–D12 tends to zero, and so we have again
the same limit as the ZR-equations. For intermediate val-
ues the present Eq. (65) provides a smooth transition be-
tween the two regions, while the ZR-equation more likely
represents a single-point approximation. It should be noted

Fig. 10. Predicted pore-averaged velocities, for isobaric counterdiffusion
of He and Ar. Purity of each component 99%, total pressure 1 bar. Also
shown is the difference in the average velocities as predicted by Eq. (65),
compared to the results of Zhdanov and Roldughin, Eq. (62), pore length
10−3 m.

that the authors point out that their transition equation holds
only for small Knudsen layers [20]. Although much of the
mathematics used in the statistical-mechanics approach is
hardly tractable for the average chemical engineer, it is very
clear that at several points in the derivations, approxima-
tions are made by limited series development in terms of
Sonine polynomials, and discarding higher-order terms. In
the ZR-papers a considerable focus was on the thermodiffu-
sion effect, and so in that respect they applied higher-order
expansions. That their equations are not complete can be
seen for the case of isobaric diffusion, which leads to

〈u1〉 − 〈u2〉 = − 1

x1x2
[–D12]1

dx1

dx
(67)

and so even in the Knudsen region the velocity difference
would be equal to that in the normal region. This is illus-
trated in Fig. 10 for the isobaric counterdiffusion of He and
Ar. The VPM predicts a continuous transition between the
Knudsen and the normal region, while the ZR-equation only
shows a constant value. Thus it is quite possible that further
development in statistical mechanics will deliver a more ex-
tended model, and it will be exiting to compare this with the
VPM model.

4.4. Isobaric diffusion of components with (near-)equal
mass

In “two-bulb experiments” Waldmann and Schmitt [14]
showed that when two reservoirs, each initially filled with
a pure gas at the same pressure, are connected by a capil-
lary, one of the gases will move faster through the tube than
the other, causing an overpressure in one of the reservoirs.
They showed that this also holds for gases with equal mass
such as N2–C2H4, and near-equal mass, such as Ar–CO2.
They also showed that at low average pressures the over-
pressure is at the CO2-side, while at higher pressures this is
reversed. An indication of the possible occurrence is found
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Fig. 11. Pore-averaged total velocity for isobaric counterdiffusion of Ar
and CO2 at 1 bar, as predicted by the VPM-1 and the BFM. Positive
direction from Ar to CO2, pore length 10−3 m.

by calculating the steady-state total pore-averaged flux at
given total pressure and fixed reservoir mole fractions. We
carried out such calculations for a range of pore diameters,
and obtained the results as shown in Fig. 11. It is interest-
ing that the binary friction model shows this flow reversal,
as it did for the pressure effect, but that the present model
predicts a second reversal point. It will be very interesting
to investigate this experimentally. Also not reported to our
knowledge is the effect of temperature on such phenomena.
For a total pressure of 1 bar, and a tube diameter of 1 �m
we calculated that there would be a flow reversal also with
temperature. As can be seen in Fig. 12, there is large dif-
ference in reversal temperature between the binary friction
model and the velocity profile model. Inspection of the nu-
merical results showed that over the range investigated the
differences stem from the difference between the models in
the wall friction factors, which grows from 0.3% at a pore
diameter of 10−7 m to about 10% at 10−4 m. Here we see
that the difference between the two models is the largest,
because the phenomenon of isobaric counterdiffusion with
(near-)equal mass is only a very subtle one. For non-equal
mass isobaric counterdiffusion and for non-isobaric diffu-
sion the results of both the models are very close together.

Fig. 12. Reversal prediction of the pore-averaged total velocity in depen-
dence of temperature, for isobaric counterdiffusion of He and Ar, pore
length 10−3 m.

5. Velocity profiles

Also here our treatment is only exploratory, since the new
model offers very extended possibilities for investigation.

5.1. Liquid ultrafiltration, related to earlier experiments

The first case we considered is the ultrafiltration of aque-
ous PEG-3400 and dextran T-70 solutions, for which we
earlier showed that the cross-section averaged models gave
a good correspondence with experimental data. First we cal-
culated the velocity profiles for the conditions correspond-
ing to our experiments. From the integral calculations we
found the difference in concentration but also in chemical
potential of the components over the pore length. We evalu-
ated the velocity profiles at the average concentration in the
pore, and at the linearized gradient values of the chemical
potential and total pressure. In Fig. 13 we present the pore
velocity profiles of PEG-3400 and water for three values of
the flux, for the WFBX-0121-membrane, at a module circu-
lation velocity of 1.95 m s−1. As a reference value we have
chosen here the average velocity according to the Poiseuille
equation. We see that the water velocity profile in all cases
is very close to the Poiseuille profile. For a very low total
flux, 10−6 m s−1, we find that the PEG has a higher velocity
than the water. With increasing flux we find that the rela-
tive velocity decreases and eventually becomes smaller than
that of water. The reason for this can be found in the change
in the chemical potential gradient for PEG. For the average
velocity of component 1 relative to the average Poiseuille
velocity we can write:

〈u1〉
〈uPois〉 = 1 + ϕh

(
B1

Bt

ηt

η1
− 1

)
(68)

In order to increase the flux, the external transmembrane
pressure is increased; although an increased concentration
polarization at the membrane surface occurs, a still higher
pressure gradient inside the membrane pore results, going
from −8.5 × 109 N m−3 through −8.4 × 1010 N m−3 to

Fig. 13. Velocity profiles inside the pores during ultrafiltration of
PEG-3400, as follows from the VPM-1, for three values of the trans-
membrane flux. Conditions as in Fig. 5.
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Fig. 14. Velocity profiles inside the pores during ultrafiltration of dextran
T70 on YM-30 membrane in a stirred cell, as follows from the VPM-1,
for three values of the transmembrane flux. Conditions described in [5,25].

−4.3 × 1011 N m−3. The part taken up by the PEG in terms
of its gradient B1 goes from 10.6% through 7.3 to 4.9%,
thus increasing the relative force on the water. Due to the
increase in the PEG-concentration the ratio ηt/η1 decreases,
leading to a decrease in (B1/Bt)(ηt/η1) from 1.76 through
1.19 to 0.51. The value of ϕh remains nearly constant, go-
ing from 0.34 to 0.3, and so we see that the relative velocity
of the PEG decreases, as reflected in the velocity profiles.

In a similar simulation we took the values encountered
in the UF of dextran T70 as we studied in a stirred cell
with a YM30 membrane. The results of the velocity profiles
are shown in Fig. 14. With increasing flux we see now that
the water velocity profile becomes much more pronounced,
going considerably faster than the Poiseuille profile. The
behavior with increasing flux of the dextran relative velocity
profile is more complex. First the dextran relatively slows
down, and then the velocity increases again. Contrary to
the PEG-case here the fraction of the total pressure gradient
taken up by B1 increases with increasing flux, due to a much
stronger concentration polarization in the boundary layer:
from 0.9% through 1.9 to 6.2%.

We find that (B1/Bt)(ηt/η1) decreases stronger than for
PEG-3400, going from 0.53 through 0.11 to 0.10. Here with
increasing flux the value of ϕh goes down from 0.94 through
0.91 to 0.70. This causes first a decrease in relative velocity
due to the strong decrease in (B1/Bt)(ηt/η1), but at the
higher flux the relative velocity increases again due to the
decrease in ϕh.

5.2. Liquid ultrafiltration, constant concentration gradient,
varying transmembrane pressure

In another set of simulations we kept the concentration
gradient constant, and varied the total pressure gradient. For
PEG-3400 in a YM30 membrane we calculated the velocity
profiles at a concentration range over the pore from 15 to
1 kg m−3. In Fig. 15 the profiles are shown for PEG, again
relative to the average Poiseuille velocity. It is clear that here
the PEG-velocity is much larger than the Poiseuille flow.

Fig. 15. Velocity profiles inside the pores during ultrafiltration of
PEG-3400 on YM-30 membrane in a stirred cell, as follows from the
VPM-1, for low transmembrane pressures. Parameter transmembrane pres-
sure. Conditions described in [5,25].

For a transmembrane pressure of 2000 Pa the gradient in
chemical potential is 5.73 times the total pressure gradient,
for 4000 Pa it is 2.87, and so the driving force for PEG mo-
tion is relatively lower at the higher pressure. In Fig. 16 for
the same conditions an expanded view is shown for the wa-
ter velocity profile. At 2000 Pa we see that the water flows
against the pressure gradient. This is caused by the positive
gradient in the chemical potential of water, which in this
case is −4.7 times the total pressure gradient. This negative
flow is thus comparable to the osmotic flow in isobaric diffu-
sion. For 4000 Pa we see an interesting phenomenon: in the
center the water moves in the positive x-direction, while for
larger r-values it flows in the other direction. In the center
the PEG-velocity is highest, and so the friction force with
the water overcomes the water chemical potential gradient,
while nearer to the wall the PEG-velocity is lower and so
the water can flow backwards.

A similar simulation for dextran T70 in the same mem-
brane for a transmembrane pressure of 200 Pa shows that

Fig. 16. Enlarged velocity profiles inside the pores during ultrafiltration
of PEG-3400 on YM-30 membrane in a stirred cell, as follows from the
VPM-1, for low transmembrane pressures. Conditions described in [5,25].
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Fig. 17. Enlarged velocity profiles inside the pores during ultrafiltration
of dextran T70 on YM-30 membrane in a stirred cell, as follows from the
VPM-1, for low transmembrane pressures. Conditions described in [5,25].

here also the water velocity occurs against the total pressure
gradient as shown in Fig. 17.

Conditions such as used here in the simulations can be
attained experimentally, and so the phenomena shown here
can be verified, also quantitatively. Moreover, the backward
motion of water can in principle be measured by labeling
with deuterium or tritium.

5.3. Isobaric and isovolumetric liquid diffusion

Here we simulated the diffusion of PEG-3400 and water in
pores of different sizes, at various concentration levels. The
results are shown in Fig. 18. Here we have taken as reference
velocity the average velocity of PEG-3400 (component 1)
in case of a very large pore size:

〈u∞
1 〉 = −η2

ηt

–D12

ctRgTx1x2
B1 (69)

For a low average concentration, 0.06 kg m−3, we see in
Fig. 18a that for a pore size of 10 nm we have a strongly
curved velocity profile for PEG, and the wall friction clearly
slows down the diffusion. For a pore size of 100 nm we ob-
tain over the largest part of the pore diameter a virtually
flat velocity profile, with only a small region near the wall
in which the velocity gradient is located. This approaches
then the classical assumption of a uniform velocity profile.
The region near the wall over which the velocity gradient
is present becomes smaller with increasing pore size. The
water velocity is very small. For a high average concentra-
tion, 60 kg m−3, we see in Fig. 18b again for the pore size
of 10 nm a strongly curved velocity profile, and for 100 nm
a flattening out. However, here we see that the water veloc-
ity is much higher. For the case of very large pores we have
for the ratio of the average velocities:

〈u∞
2 〉

〈u∞
1 〉 = −η1

η2
= −c1V̄1κ1

c2V̄2κ2
(70)

Fig. 18. (a) Velocity profiles in a pore in isobaric diffusion of PEG-3400
in aqueous solution, for very low PEG-concentration, with pore diameter
as parameter. (b) Velocity profiles in a pore in isobaric diffusion of
PEG-3400 in aqueous solution, for high PEG-concentration, with pore
diameter as parameter.

The value of κ1/κ2 is only slightly dependent on concentra-
tion [4], and so with increasing value of the concentration
of component 1 the velocity of component 2 increases.

It should be noted that the present model fixes the veloc-
ities and thus the fluxes for isobaric transport by means of
the boundary conditions, and so even for very large pores
the viscosities remain present in the expressions. The clas-
sical way to fix the fluxes for large-pore molecular diffusion
is to assume isovolumetric transport. For the gradient in the
total pressure we have by addition of the equations for com-
ponents 1 and 2:

dPt

dx
= −ctRgT (β1m〈u1〉 + β2m〈u2〉) (71)

For isovolumetric transport we have

〈u1〉c1V̄1 + 〈u2〉c2V̄2 = 0 (72)

Combining (71), (72), (49) and (51) we obtain

dPt

dx
= –D12

B0
c2

t V̄1V̄2(κ1 − κ2)c1
dµ1

dx
(73)

and so, although there is a fundamental difference between
isobaric and isovolumetric diffusion, at increasing pore size
we see that because of the increase in B0 the total pressure
gradient for the latter situation will become very small.
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From Eq. (72) it follows:

〈u2〉
〈u1〉

∣∣∣∣
isovolumetric

= c1V̄1

c2V̄2
(74)

and we may write for isovolumetric transport of component
1:

ctRgT

(
gD

x1x2

–D12

ηt

η2
− κ1φ1

B0

)
〈u1〉 = B1 (75)

while we have for isobaric transport:

ctRgT

(
gD

x1x2

–D12

1

φ2
− κ1φ1

B0

)
〈u1〉 = B1 (76)

For large pores the second term between brackets disappears,
and for very dilute solutions φ2 → 1, and ηt → η2, and so
the predictions for both situations approach each other.

An example of the other extreme may be the adsorption
of large biopolymers in pellets with small pores. For such
polymers we will have a large specific volume and a high
value of κ , leading to a considerable gradient in total pres-
sure, with the lowest pressure inside the pellet.

5.4. Non-isobaric counterdiffusion of gases

In Fig. 19 the velocity profiles of He and Ar are presented
for the case that we have an overpressure at the Ar-side
of 1 bar, and 99% purity of both gases, for several pore
diameters. The parameters are evaluated at the point values
halfway the capillary. For a pore diameter of 0.1 mm we see
that the velocity profiles of both gases very closely approach
the Poiseuille profile. For a diameter of 1 �m we see for both
gases a considerable slip velocity at the wall, and a difference
in velocity between Ar and He. The helium velocity is lower,
because of the driving force against the direction of the
Ar-flow. For 0.5 �m diameter we see an increase in slip
velocity for Ar, and for He we see that the inner core is
still moving in the direction of Ar-flow, but near the pore
wall it is moving in the other direction, from high to low He
pressure. Similar to the liquid diffusion depicted in Fig. 16,
here also in the pore center the friction with the fast moving

Fig. 19. Velocity profiles inside pores during non-isobaric counterdiffusion
of He and Ar. Same conditions as in Fig. 7.

Fig. 20. Velocity profiles inside pores during isobaric counterdiffusion of
He and Ar.

Ar molecules causes the He to move with them, while near
the wall the friction force between the molecules is lower.

5.5. Isobaric gas diffusion

In Fig. 20 we present the velocity profiles again for He–Ar
diffusion at a total pressure of 1 bar. Again we have taken
the parameter and gradient values halfway the pore. Here
we have normalized on the velocity difference according to
an infinite medium:

u∞
MS = − –D12

Ptx1x2

dP1

dx
(77)

For a pore of 10 nm we see a virtually flat velocity profile,
corresponding to Knudsen diffusion. For 1 �m we clearly
have a curved velocity profile, and for 0.1 mm we have nearly
flat profiles, with a small gradient to a high slip velocity at
the wall. For isobaric transport we have

〈u2〉 = −〈u1〉f1mP1

f2mP2
(78)

For the large pore we find ϕ = 4.11 × 10−5, and h = 0.97.
From Eqs. (60) and (61) for x1 = x2 = 0.5 we find that for
this large pore size

f1m

f2m
≈ DK

2

DK
1

= 0.316

Contrary to the analysis from the binary friction model
we see here that both for very small and very large pores,
at equal mole fractions, the velocity and so the flux ratio
closely follows Graham’s law; only at intermediate values
of the modulus ϕ we have deviations.

5.6. Stefan diffusion

Here we consider the Stefan diffusion of water vapor
through N2. We assume that 〈u2〉 = 0, and so we obtain for
the pressure gradient of water vapor

dP1

dx
= −gD

Ptx1x2

–D12
〈u1〉 − f1m〈u1〉P1 (79)
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Fig. 21. Velocity profiles of water and nitrogen in a Stefan-tube at: (a)
high mole fraction of water; (b) low mole fraction of water; pore-average
velocity of nitrogen is equal to zero. Pore diameter as parameter, pore
length 10−3 m.

from which follows:

〈u1〉 = − 1

gD(Ptx1x2/–D12) + f1mP1

dP1

dx
,

dP2

dx
= − gD(Ptx1x2/–D12)

gD(Ptx1x2/–D12) + f1mP1

dP1

dx
(80)

Here we choose a value of (dP1/dx) and of P1, and by this
choice the other parameters follow, including the gradient in
total pressure. In Fig. 21a, we present the velocity profiles
for water vapor and air for three pore diameters, at a high
mole fraction of water. For the 10 nm pore we have again
Knudsen diffusion, and the air velocity profile is flat. For a
pore of 1 �m we see a strongly curved velocity profile for
water, and also for nitrogen. In the center of the pore the
nitrogen is dragged along by the fast water vapor, and since
the total flux is zero, near the walls the nitrogen has to flow
into the other direction. This is even stronger for the 0.1 mm
pore. It also means that near the water surface these profiles
cannot hold anymore, but that a circulation of nitrogen from
the outer annulus towards the inner core has to take place.
Also this may be verified by a suitable experiment, e.g. by
injecting a detectable tracer in the gas stream flowing over
the outlet of the Stefan-tube.

In Fig. 21b the velocity profiles are shown for a low mole
fraction of water. For the 10 nm pore, as well as for the
0.1 mm pore, we see essentially nearly a flat velocity profile,

with a very small gradient at the side. For a 1 �m pore we
have a more curved velocity profile for the water vapor. Here
we see that the velocities of the nitrogen are virtually equal
to 0 over the whole pore cross-section. Thus, if we specify
a large enough capillary diameter for our students test, the
error made in using the very simple Stefan equation without
wall effects, is very small. For modeling drying processes
with pores in the 0.1–1 �m range, however, we need to be
more precise.

6. Concluding remarks

We have developed here a model for a single pore, without
radial transport. As such this is applicable to, e.g. membrane
ultrafiltration, diaphragm diffusion cells, transport studies
in capillaries, and membrane reactors with inert pore sur-
faces. From the comparison with experimental data it is
clear that the integrated velocities represent a close approx-
imation of the transport processes actually happening. We
made plausible that in the momentum balance for a com-
ponent the shear term should be incorporated, but limited
to the velocity gradient of this component. Also it was
made clear that there lies a challenge in the field of sta-
tistical mechanics study of this type of phenomena, since
the present equations from this field are insufficient. As
shown, the earlier presented binary friction model gives in
many cases results which are very close to the new model,
with the exception of isobaric counterdiffusion of gases of
near-equal mass. Since the BFM is not limited to binary
systems, it may still be considered a good working theory
until further development of velocity profile model has been
done.

We have demonstrated the application of the present the-
ory in a number of examples. There is a lot more work
to be done in this area. In the earlier work the transport
in macro- and mesopores has generally been considered as
one-dimensional. However, in heterogeneous catalysis, ad-
sorption and drying we have radial transport to and from the
pore wall. The equations presented here for the most simple
transport case can be easily extended to more-dimensional
transport, and can at least be solved numerically by most
commercial CFD packages. This will enable the study of
to what degree simplified models are sufficient to describe
these more complex phenomena.

Another logical study is the development of the present
theory towards multicomponent systems.

We feel that the present treatment may contribute to a
more realistic understanding of pore transport, in contrast
to previous work based on only estimates of pore-averaged
fluxes without fundamental underpinning. In communi-
cating these phenomena no more use is needed of mys-
tifying terminology, such as a large variety of fluxes. In
the present form the theory is accessible to undergradu-
ate level, and as such may aid in teaching mass transfer
phenomena.
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Appendix A

The equations for the VPM can also be written in terms
of the fluxes through 〈Nα〉 = 〈uα〉cα . For binary liquids we
obtain

N1 = u1c1 = −Γc1

G

dc1

dx
+ uv F

G
c1, F = gD

–D12
+ c2

t V1V2

B0
κ2,

G = gD

–D12
+ ct

B0
(φ2κ1V1 + φ1κ2V2)

with

Γc1 = 1 + c1
dln γ1

dc1
− c1

ct

(
1 − V̄1

V̄2

)
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